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ABSTRACT

Computational representation of perceived image quality is a
fundamental problem in computer vision and image process-
ing, which has assumed increased importance with the growing
role of images and video in human-computer interaction. It is
well-known that the commonly used Peak Signal-to-Noise Ra-
tio (PSNR), although analysis-friendly, falls far short of this
need. We propose a perceptual image quality measure (IQM)
in terms of an image’s region structure. Given a reference im-
age and its “distorted” version, we propose a “full-reference”
IQM, called Segmentation-based Perceptual Image Quality As-
sessment (SPIQA), which quantifies this quality reduction, while
minimizing the disparity between human judgment and auto-
mated prediction of image quality. One novel feature of SPIQA
is that it enables the use of inter- and intra- region attributes
in a way that closely resembles how the human visual system
(HVS) perceives distortion. Experimental results over a number
of images and distortion types demonstrate SPIQA’s performance
benefits.

Index Terms— IQM, QA, HVS, segmentation, saliency

1. INTRODUCTION

An IQM that creates a computational representation of perceived
image quality is needed in computer vision and image process-
ing, and has assumed increased importance with the growing role
of images and video in human-computer interaction. PSNR is
the de-facto standard for quality assessment due to its computa-
tional simplicity, however its use of a pixel-based distance met-
ric fails to capture the human-perceived qualities of image dis-
tortion. Several other IQM’s have been proposed recently [1],
but none form a computationally robust method that mimics the
HVS. Humans comprehend the contents of an image, and using
mid-level techniques, an IQM should emulate the HVS by ex-
amining the structure of an image and quantifying distortion in
terms of the perturbations to image structure. Segmentation is a
mid-level vision technique that captures the structure of an im-
age and achieves dimensionality reduction by dividing an image
into regions that are defined by their shape, color, size, and tex-
ture. SPIQA, our proposed IQM, achieves superior results by

using segmentation-based regions to quantify the distortion of an
image in terms of image structure.

We compare SPIQA against PSNR and the two IQM’s which
had the best experimental performance in the recent survey paper
[1]. Our IQM, like all two of the IQM’s in [1], had superior
results to PSNR. SPIQA not only outperformed the three IQM’s
in [1], but was able to train on only 13% of the database that
was used in [1] and achieved lower RMSE with respect to human
opinion scores, even before the nonlinear regression fitting that
was necessary in [1].

The rest of this paper is organized as follows: Section (2)
summarizes the previous work on IQM’s, Section (3) gives a
description of the underlying components that formulate the
SPIQA measure, Section (4) presents experimental results of
the algorithm, demonstrating its performance as compared to
the IQM’s that achieve the best results in [1], and Section (5)
provides concluding comments and future goals.

2. BACKGROUND

The formulation of IQM’s for image quality assessment (QA) is
an old field. IQM’s can be divided into two categories according
to the amount and form of human intervention involved: subjec-
tive or objective IQM’s. (1) A subjective IQM requires direct
human intervention, since it is based on the cumulative judgment
of a group of human observers. This type of IQM is heavily cor-
related with the observers’ preferences.

(2) On the other hand, an objective IQM analyzes a distorted
image and possibly a reference image, in the absence of any di-
rect human intervention. Most IQM’s are of this type. Objec-
tive IQM’s either measure the quality of an image with respect
to a reference (“full-reference”) or in the absence of a reference
(“blind-reference”). In this paper, we will discuss a novel, “full-
reference”, region-based IQM, SPIQA.

Traditional objective IQM methods rely primarily on mod-
elling and approximating the functionality of HVS in terms of
well-known image processing operations. One of the first notable
IQM’s was the Just Noticeable Difference (JND) measure, which
was developed in the seminal work by Lubin ([2]). JND and other
traditional IQM’s quantify the threshold of distortion that must be
exceeded before a human can perceptually detect that distortion
has been imposed on the reference image. These methods tend



to fall short of efficiently approximating the complex, nonlinear
functionality of the HVS. Also, some methods of this IQM type
rely on parameters that are dependent on experimental settings.

More recent objective IQM’s are considered signal fidelity
IQM’s, since they compute the measure based on inherent fea-
tures of the pair of images only, thus, avoiding dependence on
the experimental setup. In this work, we consider three IQM’s:
(a) the simplest and the defacto standard measure of PSNR and
two signal fidelity IQM’s that showed the best experimental per-
formance in a recent survey [1]: (b) Multi-Scale Structural SIM-
ilarity (MSSSIM) [3] and (c) Visual Information Fidelity (VIF)
[4].

(a) PSNR uses a pixel-based distance measure. However, this
method fails to capture the structure of distortions. Such structure
plays an important role in perception of distortion by humans, and
occurs in most applications (e.g. blocking artifacts due to JPEG
compression).

(b) MSSSIM divides an image into rectangular blocks, or
patches, and computes 1st and 2nd order statistics for each patch.
These statistics do not sufficiently represent the luminance dis-
tribution of image patches. Also, its “structural factor” is inde-
pendent of the spatial distributions. The unexplored spatial rela-
tionships are important, as evident from the visual masking phe-
nomenon [5], where respective luminance distributions and spa-
tial localization of the image regions are able to mask or enhance
distortion in a specific region.

(c) VIF takes an information fidelity approach to image
QA using wavelet decomposition. No explicit interaction be-
tween wavelet subbands is modeled, since the subband-specific
VIF measures are pooled together independently. This inde-
pendence counteracts the highly regarded contrast sensitivity
function (CSF) [5], which renders certain wavelet subbands less
effective than others in quality perception.

In this paper, we propose a signal fidelity IQM (SPIQA),
which manipulates some of the important characteristics of the
HVS, while remaining independent of subjective factors related
to the experimental setup. The contributions of our proposed
IQM are three fold: (1) it uses image segmentation to delineate
coherent regions of human attention, (2) it quantifies both inter-
and intra- region interactions in a manner that conforms to certain
functional aspects of the HVS, and (3) it quantifies the quality of
an image segment via local (e.g. at ramp and non-ramp pixels)
and global features that represent both the structure and the con-
tent of each segment.

3. REGION BASED IMAGE QUALITY ASSESSMENT

In this section, we describe how SPIQA is formulated. The major
motivation for our measure is to incorporate image segments in
its definition, which makes the quality measure depend on spatial
structure in addition to image intensity values.

Image segmentation partitions an image into disjoint regions
that contain pixels that are “similar” to each other, but “different”
from the pixels of another region. The problem of efficient and

perceptually correct segmentation is still an unsolved problem in
computer vision, but there are numerous algorithms in the liter-
ature that approximate the segmentation. We use the multi-scale
segmentation algorithm implemented in [6]. The resulting seg-
mentation is characterized by homogeneous regions surrounded
by ramp discontinuities. Thus, each segment at every photomet-
ric scale includes ramp and non-ramp pixels. In our implemen-
tation, we use a single photometric scale and segment only the
reference image. The same segment boundaries are also used for
the distorted image.

After image segmentation, we compute the overall mea-
sure as a weighted sum of the regional image quality measures
(RIQM’s). Each segment’s RIQM contributes to SPIQA as
follows:

SPIQA =
∑

segi⊂Iref

wi RIQMi (1)

wi = β1sizei + (1− β1)sali ; β1 ∈ [0, 1] (2)

wherewi weighs the contribution of the RIQM in the ith segment,
thus summarizing all inter-segment interactions by quantifying
the importance of each segment in terms of its overall saliency
and size. RIQMi is the regional quality measure which summa-
rizes all intra-segment interactions according HVS perception of
independent segments.

3.1. Inter-Segment Interactions: wi

Equation (2) expresses wi as a linear combination of two nor-
malized factors: sizei = # of pixels in segi

# of pixels in Iref
and sali = saliency of segi

saliency of Iref
.

Here, saliency is computed in accordance to human visual atten-
tion as described in [7] (refer to Figure 1). We justify the use
of saliency from a human perception point of view. Humans con-
centrate on high-level features of an image to identify its contents;
however the saliency algorithm computes the saliency map on a
pixel basis using low-level features.

By incorporating the pixel-based saliency map into coherent
regions, we incorporate higher-level features that better represent
the focus of human attention. By virtue of wi’s, the effects of
distortion on the image quality are more influenced by the distor-
tions in the most salient regions. To the best of our knowledge,
the use of such segment interaction is novel to non-traditional
IQM formulation, which usually assumes independence between
neighboring blocks or bands.

3.2. Intra-Segment Interactions: RIQMi

This section highlights the intra-segment interactions, which cap-
ture the “similarity” between the reference and distorted segment.
The YCrCb color space (primarily the luminance component) is
used, since it best approximates the HVS color perception among
common color spaces. RIQM is defined as the product of three
factors, as shown in Equation (3): namely gradient similarity
(∆Gi), similarity in histogram (∆Hi), and normalized mutual



Fig. 1. The reference image is on the left and its corresponding
regional saliency map is on the right. Lighter regions indicate
higher saliency.

information(∆NMi). All three factors are properly normalized
to take on values in the range [0,1].

RIQMi = (∆Gi)β3(∆Hi)β4(∆NMi)β5 (3)

Gradient Similarity (∆G): We quantify the difference in So-
bel gradient energy for each reference and distorted region. This
structural term is absent in PSNR, MSSSIM, and VIF. Based on
[6], a segment contains either significant ramp or non-ramp pix-
els, which are distinguished according to the variations of their
luminance values with their neighbors. We evaluate the percep-
tual effects of distortion on ramp and non-ramp pixels separately.
Therefore, we can write ∆G of a segment (p) as a linear com-
bination of two terms: the gradient similarity at significant ramp
pixels (∆Gpr

) and the gradient similarity at non-significant ramp
pixels (∆Gpnr

) as in Equation (4) with β2 ∈ [0, 1].

∆Gp = β2∆Gpr + (1− β2)∆Gpnr (4)

where ∆Gpr
and ∆Gpnr

are defined as

∆Gpr
=

2
−→
G refpr

·
−→
G dispr

‖
−→
G refpr

‖2 + ‖
−→
G dispr

‖2 + ε
(5)

∆Gpnr
=

2
−→
G refpnr

·
−→
G dispnr

‖
−→
G refpnr

‖2 + ‖
−→
G dispnr

‖2 + ε
(6)

The Sobel gradient energy vector,
−→
Gx, that is used in (4)-(6) is

computed from the gradient of the image I: Gx(i) = ‖∇Ix(i)‖,
where x defines the specific region components (pr|pnr) and im-
age type (dis|ref) and i defines a pixel in x.

Histogram Similarity (∆H): This term is a non structural
factor that measures the difference in the distribution (esti-
mated by a histogram) of the luminance values of the pixels
within the reference and distorted segment. We define it as:

∆Hp = 2
−→
H refp ·

−→
H disp

‖
−→
H refp‖2+‖

−→
H disp‖2+ε

. This factor improves on the SSIM

measure, since the difference in luminance distributions encom-
passes more information than simply the 1st and 2nd moments.

Normalized Mutual Information Similarity (∆NM): This is
another non-structural factor, which builds on the assumption

made in [4] that the HVS reacts to the loss in mutual information
between the reference and distorted images. It normalizes the
segment’s mutual information by the entropy of the reference
segment. We define it as: ∆NMp = I(Irefp ;Idisp )

H(Irefp ) .

We determine all five β values by minimizing the squared error
between the resultant SPIQA and the experimental human deci-
sions, in difference mean opinion score (DMOS) format used in
[1], over a set of N training image pairs as shown below.
−→
β ∗ = arg min

∑N
t=1 |DMOS(t)− SPIQA(t,

−→
β )|2

4. EXPERIMENTAL RESULTS

We evaluate our IQM on the LIVE database used by [1], which
presents the most recent and comprehensive survey of the per-
formance of various IQM’s available in literature. We will com-
pare SPIQA with the IQM’s examined in [1] (i.e. MSSSIM and
VIF) using the experimental human results that [1] presents in
normalized DMOS format. The LIVE database contains 29 refer-
ence images that are distorted by one of the five distortion types:
JPEG2000 (227 images), JPEG (233 images), white noise - WN
(174 images), Gaussian blur - GBlur (174 images), and fast fad-
ing - FF (174 images).

First, we show empirical evidence that justifies our use of seg-
ments instead of regular rectangular blocks. We applied the SSIM
algorithm to both segments and blocks. Table 1 shows the im-
provement in RMSE performance of a segment-based SSIM over
the block-based SSIM.

RMSE
Block SSIM 18.75

Segment SSIM 6.120

Table 1. Block SSIM vs. Segment SSIM

Next, we learn the β values from 13% of the image pairs in
the database (i.e. 20 from each of the five distortion types orN =
100 image pairs) and compare the performance of SPIQA against
that of MSSSIM and VIF on the entire database. In Figure 2,
we plot the ground truth human judgment values (DMOS) and
the normalized IQM’s generated by MSSSIM, VIF, and our pro-
posed method when applied to each database image. The more
the IQM curve approximates the ground truth, the closer the IQM
is to human judgment. The top and bottom plots show the results
before and after nonlinear regression (as described in [1]) respec-
tively. For visual purposes, we only consider a portion of the
LIVE database in these plots. The impact of nonlinear regression
on both VIF and MSSSIM is quite significant, while it is incre-
mental for SPIQA.

Table 2 summarizes the performance of SPIQA, VIF, MSS-
SIM, and PSNR. In [1], all the database samples are used for
training, and in Table 2 we perform our experiments in the same
fashion. These experiments show that SPIQA outperforms other
IQM’s, despite nonlinear regression.



PSNR MSSSIM VIF SPIQA
JPEG2000 10.61 5.999 5.093 5.076

JPEG 12.17 5.465 5.318 5.585
WN 4.669 6.358 4.360 3.920

GBlur 11.44 5.823 3.991 4.117
FF 12.97 10.40 6.855 3.519

All Data 13.43 9.369 8.246 6.546

Table 2. RMSE Comparison - SPIQA and other IQM’s

Table 3 shows the numerical values for the estimated β val-
ues. Also, by using the database images of each distortion type
in isolation, we determined the optimal β values for each dis-
tortion type. From these results, we can make the following
key observations. For β1, regional saliency is the single inter-
regional factor to be maintained. This term inherently depends
on segment size, as it is the normalized sum of all saliency values
within a segment. For β2, significant ramp pixels are more effec-
tive in detecting change in image quality, especially for distortion
types that impose structured alteration close to strong edges (e.g.
JPEG2000). For β3, ∆G plays the most influential role in QA.
This is due to the fundamental impact of structured organization
on human visual perception. For β4, ∆H is critical in evaluating
distortion types that produce significant disruptions in regional
luminance distribution (e.g. Gaussian blur). But, the HVS seems
to tolerate more change in ∆H than ∆G. For β5, ∆NM is the
least important factor, despite its informational description of hu-
man visual judgment.

β1 β2 β3 β4 β5

All Types 0 0.872 2.407 0.670 0.255

Table 3. SPIQA weights based on N = 100 samples

5. CONCLUSION AND FUTURE WORK

In this paper, we present a novel segmentation-based IQM, which
models both inter- and intra-segment relationships, thus, cap-
turing the HVS characteristics more effectively than previous
IQM’s. SPIQA improves over the state-of-the-art quality mea-
sures by reducing the gap between automatic prediction and
human judgment of image quality.

For future work, we propose to conduct more extensive hu-
man experiments, which highlight how the HVS reacts to a mix-
ture of distortion types in the same image. We also will exper-
iment with various photometric scales in the segmentation algo-
rithm to evaluate an optimal scale, and later incorporate this into
a multi-scale algorithm.
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Fig. 2. SPIQA, VIF, and MSSSIM, before (top) and after (bot-
tom) regression

7. REFERENCES

[1] H. R. Sheikh, M. R. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Trans. on Image Processing, vol. 15, Nov. 2006.

[2] J. Lubin, Visual Models for Target Detection and Recognition, 2nd

edition, 1995.

[3] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural
similarity for image quality assessment,” Proc. IEEE Asilomar Conf.
on Signals, Systems, and Computers, Nov. 2003.

[4] H. R. Sheikh and A. C. Bovik, “Image information and visual qual-
ity,” IEEE Trans. on Image Processing, vol. 15, Feb. 2006.

[5] A. N. Netravali and B. G. Haskell, Digital Pictures, 1995.

[6] H. Arora and N. Ahuja, “Analysis of ramp discontinuity model
for multiscale image segmentation,” in Proc. of ICPR, Aug. 2006,
vol. 4, pp. 99–103.

[7] L. Itti, C. Koch, and E. Neibur, “A model of saliency-based visual
attention for rapid scene analysis,” PAMI, vol. 20, pp. 1254–1259,
1998.


