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Abstract. The range space of dynamic textures spans spatiotemporal
phenomena that vary along three fundamental dimensions: spatial tex-
ture, spatial texture layout, and dynamics. By describing each dimension
with appropriate spatial or temporal features and by equipping it with a
suitable distance measure, elementary distances (one for each dimension)
between dynamic texture sequences can be computed. In this paper, we ad-
dress the problem of dynamic texture (DT) recognition by learning linear
combinations of these elementary distances. By learning weights to these
distances, we shed light on how “salient” (in a discriminative manner)
each DT dimension is in representing classes of dynamic textures. To do
this, we propose an efficient maximum margin distance learning (MMDL)
method based on the Pegasos algorithm [1], for both class-independent and
class-dependent weight learning. In contrast to popular MMDL methods,
which enforce restrictive distance constraints and have a computational
complexity that is cubic in the number of training samples, we show that
our method, called DL-PEGASOS, can handle more general distance con-
straints with a computational complexity that can be made linear. When
class dependent weights are learned, we show that, for certain classes of
DTs , spatial texture features are dominantly “salient”, while for other
classes, this “saliency” lies in their temporal features. Furthermore, DL-
PEGASOS outperforms state-of-the-art recognition methods on the UCLA
benchmark DT dataset. By learning class independent weights, we show
that this benchmark does not offer much variety along the three DT di-
mensions, thus, motivating the proposal of a new DT dataset, called Dyn-
Tex++.

1 Introduction

A dynamic texture (DT) sequence captures a stochastic spatiotemporal phe-
nomenon. The randomness reflects in the spatial and temporal changes in the
image signal. This may be caused by a variety of physical processes, e.g., involv-
ing objects that are small (smoke particles) or large (snowflakes), or rigid (grass,
flag) or nonrigid (cloud, fire), moving in 2D or 3D, etc. Even though the overall
global motion of a DT may be perceived by humans as being simple and coherent,
the underlying local motion is governed by a complex stochastic model. For exam-
ple, a scene of “translating” clouds conveys visually identifiable global dynamics;
however, the implosion and explosion of the cloud segments during the motion re-
sult in very complicated local dynamics. Irrespective of the nature of the physical
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phenomena, the usual objective of DT modeling in computer vision and graphics
is to capture the nondeterministic, spatial and temporal variation in images. The
study of DTs poses numerous challenges, especially for traditional motion models
that fail to capture their stochastic nature. These challenges arise from the need
to capture the large number of objects involved, their complex motions, and their
intricate interactions. A good model must accurately and efficiently capture both
the appearance and global dynamics of a DT. Despite the diverse types of DTs in
nature, we see that they belong to a three dimensional DT space. In this space,
each dimension isolates a single aspect that describes the variation of an individ-
ual DT. These dimensions are, therefore, broad categories of variation for DTs,
in general. However, they are not generally independent, since for some cases of
DT, it is not possible to fix two dimensions and vary the third independently.
This interdependence is attributed to the physical nature of the phenomena being
imaged. In what follows, we will describe each of these dimensions and give their
respective ranges. Then, we will designate the portion of the DT space, where
this paper operates. Note that the first two dimensions describe the spatial vari-
ation and the spatial organization of a DT, while the third describes its temporal
variations.

1. Spatial Texture Element: This dimension describes the spatial variation
of a DT as observed from each frame independently. Texture elements (usu-
ally denoted as texels) are the spatially repetitive groups of pixels that share
statistically similar appearance and structural properties. The spectrum of
texture elements varies from the simplest form at the microscopic level (i.e.
particles) to the most complex at the macroscopic level (i.e. whole objects).
At one extreme, this spectrum has DTs that show clouds, smoke, or water in
motion, while at the other, there are DTs of birds, animals, or humans mov-
ing. The majority of DT work has focused on pixel or subpixel objects (i.e.
microscopic), whereby the pixel is assumed to be the texture element whose
motion is to be modeled.

2. Spatial Texture Layout: This dimension describes the spatial layout of the
texture elements in a DT, as well as, their spatial layering. A DT’s spatial
layout determines how its texture elements are organized within each frame,
especially in terms of their spatial placement. In this sense, there are DTs
with homogenously placed/spaced texture elements, as well as, DTs where
the placement distribution is non-uniform. Moreover, the spatial layering of a
DT refers to the “density” (or translucency) of a DT. For simplicity, spatial
layering of a DT can be viewed as the alpha matte of the texture elements,
in each frame, when visualized infront of a background layer. The values of
this alpha matte take values in [0, 1]. For opaque DTs, spatial layering is not
an issue, since the background does not appear at all (i.e. the alpha matte is
either 0 or 1). For translucent DTs (e.g. clouds and smoke), this layering is
essential. The majority of DT work has focused on DTs with opaque texture
elements that cover the whole spatial extent of the video.

3. Dynamics: This dimension describes the temporal variation of a DT as ob-
served by the frame-to-frame variation in its texture elements and their layer-
ing/layout. DT dynamics represent temporal changes in features (e.g. intensity
values and linear transformations of these values) describing the texture ele-
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ments and their layout. Note that the dynamics of a DT is a global motion
representation that incorporates the dynamics of individual texture elements
and their spatiotemporal interactions. Being a DT means that the dynamics of
texture elements are statistically similar and temporally stationary. In other
words, texture elements in the same DT all “move” in a similar fashion and
their “motions” are not time dependent (i.e. statistically stationary). As such,
the models of DT dynamics either make use of physical models (e.g. Navies-
Stokes equations [2]) or assume a general parametric model whose parameters
are learned by fitting the model to the observed DT frames (e.g. a linear dy-
namical system [3]). The majority of DT work has concentrated on the latter
form of models, where linear/nonlinear models have been proposed to model
variations in the intensity values of DTs.

In this paper, we cater to opaque DTs consisting of pixel-based texture el-
ements, whose dynamics can be represented by a linear parametric model [3].
We address the problem of DT recognition, which is motivated by critical real-life
applications, especially the detection of the onset of emergencies (e.g. fire). Recog-
nition is done by learning linear combinations of distances between DT sequences,
so that classes of DTs are maximally separated. These distances quantify how
different two DT sequences are with respect to the three dimensions mentioned
above. By learning weights to these distances, we shed light on how “salient”
(in a discriminative fashion) each dimension (i.e. spatial and/or temporal) is in
representing a single DT class or a whole DT database.

2 Related Work

DT recognition involves the analysis of both image appearance and temporal
changes in appearance. For an overview of recent techniques developed for DT
recognition, we refer the reader to [4]. Numerous DT recognition methods have
stemmed from representing the global spatiotemporal variations of a DT as a linear
dynamical system (LDS) [3]. In [5], Doretto et al. use the LDS model parameters
and the Martin distance measure [6] to perform nearest neighbor recognition. In
[7], a kernel function between two LDS models was proposed and used in a sup-
port vector machine (SVM) framework to perform DT recognition. More recent
work has addressed shift and view invariant DT recognition [8, 9]. The latter work
extends the use of the popular bag-of-features model to the non-Euclidean space
of LDS models.

Other recognition methods have used a multiplicity of spatiotemporal descrip-
tors to represent a DT sequence. In [10], Peteri et al. propose a DT recognition
algorithm based on six translation invariant features. Recent work by Zhao et al.
proposed using local binary patterns (LBP) [11] and volume local binary patterns
(VLBP) to recognize DT sequences [12, 13]. The latter two methods are based on
local descriptors, which do not incorporate the global dynamics that characterize
a DT.

Despite the merits of these methods, they all either focus on one dimension of
the DT space defined before or assume that these dimensions contribute equally
and in the same manner for all DT classes. These assumptions are quite restrictive
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and fail to characterize the discriminative properties of many DTs. To the best
of our knowledge, this paper is the first to address the problem of combining the
discriminative properties of the three DT dimensions. Here, we provide an intuitive
example that motivates why this is important in DT recognition. On one hand,
the fire DT class is easily distinguished from other DT classes, primarily due to
its highly discriminative dynamics, as compared to its spatial texture appearance.
On the other hand, DTs such as moving leaves and grass have a more “salient”
spatial texture element.

We infer the contributions of the DT dimensions by using a multiplicity of DT
descriptors, each of which operates in a given dimension. We elaborate on these de-
scriptors and motivate their selection later. Since these descriptors are of different
dimensions and belong to different spaces, we model the distance between two DT
sequences as a weighted sum of the elementary distances between their respective
descriptors. Learning these weights in a maximum margin setting will determine
the contributions of the DT dimensions, in such a way that maximizes DT class
discrimination. Learning weighted distance functions in a maximum margin frame-
work is not new, as it has been successfully applied to image classification and
retrieval [14, 15] and more recently to region-based object recognition [16]. These
approaches impose the following distance constraint: an image is closer to all other
images in its class than to images of all other classes. In feature space, this forces
classes to be significantly compact, which tends not to be the case for most real
data. This “compactness” assumption is quite restrictive and does not generalize
well to object classes that share properties (e.g. cow vs. horse). Furthermore, this
assumption produces a number of distance constraints/variables that is cubic in
the number of training images, since all relevant distance triplets are used. Our
method generalizes this “compactness” assumption whereby each DT sequence is
only closer to a representative set of DTs within its class than to a comparative set
of DTs outside this class. By taking the representative set of a DT to include its k
nearest neighbors within its class and its comparative set to include all other DTs
outside its class, we allow for less compact DT classes and much fewer distance
constraints. To reduce computational complexity, we solve the primal version of
the maximum margin problem in a way similar to the Pegasos algorithm [1].

Here, we note that distance weight learning finds some similarities with mul-
tiple kernel learning (MKL), which has been recently applied to object detection
[17, 18]. In MKL, the kernels define similarities between elements and are, by
definition, symmetric and positive definite kernels. Although similarities can be
formed from certain distances (e.g. by parametric negative exponentiation), these
distances need not be symmetric and the parameters used to form the similarities
need to be set wisely. This method also suffers from a computational drawback,
since it requires expensive optimization techniques to learn the kernel mixing
coefficients. Moreover, the MKL framework does not readily accommodate the
distance constraints required in maximum margin distance learning (MMDL).

Contributions: The contributions of this work are three fold. (1) We propose to
learn the individual contributions/weights of all three DT dimensions, in regards to
DT class discrimination. (2) To learn these weights, we propose an efficient MMDL
method based on the Pegasos algorithm, whose complexity can be made linear in
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the number of training samples. (3) A new DT dataset, called DynTex++, is
compiled to replace the current UCLA benchmark dataset.

This paper is organized as follows. In Section 3, we give an overview of the
DT recognition problem, in an MMDL framework. Section 4 provides a detailed
description of our proposed solution and algorithm, while Section 5 shows exper-
imental validation of this algorithm, when applied to the UCLA and DynTex++
datasets.

3 Problem Overview

In this paper, we seek to learn how the different dimensions of the DT space
can be linearly combined to best discriminate between DT classes. Learning these
linear combinations for a given DT class or a group of DT classes sheds light on
the relative importance of each DT dimension. We choose a suitable descriptor to
represent each dimension, which is characterized by a corresponding elementary
distance. Since these descriptors need not belong to vector spaces, the elementary
distances are can be of different forms. In this framework, the distance between
two DT sequences is modeled as a positively weighted sum of their elementary
distances. These weights are learned in a maximum margin fashion, so that DT
classes are maximally separated. We consider the case of class independent and
class dependent weights.

We assume a set of M training DT sequences (from N classes) is given with
corresponding labels in {1, . . . , N}. Let `(.) denote the labeling function, whereby
`(vi) is the label of the DT sequence vi. The DT sequence vi has F different
DT descriptors1, which characterize the three different DT dimensions. We de-
fine the f th elementary distance from vj to vi as df (vi → vj). Here, we note
that these elementary distances need not be symmetric. As such, the combined
distance from vj to vi is defined as Dw`(vi)

(vi → vj) =
∑F

f=1 w
f
`(vi)

df (vi → vj).
More compactly, we can combine the elementary distances in vector format to
obtain Dw`(vi)

(vi → vj) = wT
`(vi)

d (vi → vj). Here, wf
`(vi)

is the weight that char-
acterizes the f th elementary distance for class `(vi). Here, we are considering class
dependent weights; however, class independent weights are similarly incorporated
by dropping the class label from w`(vi).

In order to best separate the DT classes, we assume that each DT of a given
class is closer to a representative set of DTs within this class than a comparative set
of DTs outside this class. Let R(vi) define the representative set corresponding
to DT vi and C(vi) define its comparative set. Under this assumption, a set of
distance constraints arises for each DT vi, defined as follows. For all i 6= j, `(vi) =
`(vj) 6= `(vk), vj ∈ R(vi), and vk ∈ C(vi) we have:

Dw`(vi)
(vi → vj) ≤ Dw`(vi)

(vi → vk)⇔ wT
`(vi)

4d (vi, vj , vk) ≥ 0 (1)

where d (vi, vj , vk) = d (vi → vk) − d (vi → vj) is the distance difference corre-
sponding to the DT triplet vi, vj , and vk. The total number of these constraints

1 In this paper, F = 3, but the method generalizes to any number of descriptors.
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is
∑M

i |R(vi)||C(vi)|. Clearly, this number and thus the scale of the optimization
needed to learn w`(vi) depends on the nature ofR(.) and C(.). In fact, it is bounded
by Θ(M3) from above and Θ(M) from below.

Let Ac ∈ RL×F denote the matrix whose rows are composed of all the distance
difference vectors 4d(vi, vj , vk) for all DTs vi where `(vi) = c. The distance con-
straints in Eq. (1) can be formalized as Acwc � 0. We embed these constraints in
a maximum margin framework, as shown in Eq. (2). In this framework, the cost
function includes two terms that work towards minimizing the classification bias
and variance. The second term is the average hinge loss cost of the L distance
constraints. This cost uses a margin of 1 instead of 0. Although using L1 regular-
ization is known to lead to sparser solutions, we choose an L2 regularization term
on wc instead, as it is more robust to noise and outliers and the number of feature
descriptors F is relatively too small to benefit from a sparse solution.

min
wc�0

λ

2
‖wc‖22 +

1
L

L∑
i=1

max
(
0, 1−wT

c ac(i)
)

(2)

where ac(i) is the ith row in Ac. It is important to point out that when solv-
ing for class independent weights the matrix of distance constraints becomes a
concatenation of all Ac matrices with c ∈ {1, . . . , N}. Furthermore, note that
class information need not be provided so long as relative dissimilarities/rankings
are. In other words, even when class labels are not given, our method can still
be applied, if pairwise distance inequalities are known. So, a statement like “dy-
namic texture A looks more similar to dynamic texture B than C” can be directly
translated to a distance constraint.

The formulation in Eq. (2) is the same one used in the Pegasos algorithm
[1], except for the non-negativity constraint on wc. In the next section, we will
show how the original Pegasos method can be modified to efficiently solve for
wc, to incorporate different forms of R(.) and C(.), and to reduce the number of
distance constraints used in each Pegasos iteration. In fact, we choose to use this
formulation/method instead of the one used in [14–16], since the latter does not
lend itself suitable for variations in the representative and comparative sets and it
requires a custom solver to handle a large number of distance constraints.

After solving for wc of each class, a test DT sequence is classified as the class,
which satisfies the most (or violates the least) number of distance constraints
generated by the test DT. More specifically, for each class in the training set, a
logistic regression classifier2 is learned based on the combined distances of training
samples to samples within this class, as done in [16]. The test DT is assigned
to the class, whose regression classifier evaluates to the maximum value among
all classes. In the case of class independent weight learning, a simple k-nearest
neighbor (kNN) classifier can be employed to classify the test DT.

2 For a test sequence vp, f(vp|c) =
(

1 + exp
(
α0 +

∑
vi:`(vi)=c

αiDwc(vi → vp)
))−1

defines the logistic regression classifier of class c.
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Elementary Distances

In what follows, we present and justify the set of feature descriptors (F = 3) that
we choose to represent the three DT dimensions of a DT sequence.

1. Spatial Texture Element: This DT dimension is described by a histogram
of Local Binary Patterns (LBP), which provides a simple yet powerful local
depiction of intensity variation. Each frame in a DT is described by an LBP
histogram. As such, the elementary distance between two DTs along this di-
mension is the minimum distance between LBP histograms from these two
DTs. To compare histograms, we use the Earth Mover’s Distance (EMD) [19],
which though more computationally expensive than other distances (e.g. `2
norm or χ2), it provides a more accurate histogram distance. This spatial
texture descriptor has been successfully utilized in DT recognition [12] and
extended to video sequences in [20]. Recently, it has also proven to be useful
in improving human detection performance [21].

2. Spatial Texture Layout: This DT dimension is described by a Pyramid of
Histograms of Oriented Gradients (PHOG), which provide a powerful depic-
tion of local spatial layout. In building the PHOG of a DT frame, we assume
uniform weighting for each histogram at a given pyramid level and we normal-
ize with respect to the number of histograms at each pyramid level. We only
use two levels in the pyramid. Similar to the LBP descriptor, we use EMD to
compute distances between histograms. Prior work has used this descriptor
extensively in detecting objects, especially human detection [22], as well as,
image retrieval [23].

3. Dynamics: To describe the global temporal variations of a DT sequence,
we model it as a Linear Dynamical System (LDS) [3]. An LDS model is pa-
rameterized by the matrix pair (A,C), which govern feature generation and
state transition. We assume a model size of 25, in our experiments. The LDS
model and its variants have been extensively applied to DT recognition, most
recently in [8, 9]. The elementary distance between two LDS models is the
Martin distance between ARMA processes [6].

Since each elementary distance above spans a different range of values, proper
normalization is called for. After computing the elementary distances between
DT sequences in the training set, we normalize each distance type by its mean (µ)
offset by a multiple of its standard deviation (σ). In our experiments, we normalize
each elementary distance by its corresponding (µ+ 3σ).

4 Learning Maximum Margin Weights

In this section, we give a detailed description of the learning algorithm used to
compute wc in Eq. (2). Algorithm 1 summarizes the learning process, which
is a modified version of the original Pegasos algorithm [1]. DL-PEGASOS can
handle general definitions for R(.) and C(.), since they can be data-driven and/or
application specific. Furthermore, these definitions can even be dependent on wc,
which explains why R(vi) and C(vi) must be updated at each iteration of this
algorithm (refer to STEPS 2-3). In this case, Eq. (2) is no longer convex and
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so DL-PEGASOS becomes a stochastic, projected3 subgradient descent method
that alternates between (i) performing a Pegasos iteration when the sets R(vi)
and C(vi) are fixed for all DT sequences vi and (ii) updating these sets for a
fixed Pegasos solution of wc. A study of convergence for DL-PEGASOS is kept
for future work; however, empirical analysis is very promising.

Algorithm 1: Distance Learning PEGASOS (DL-PEGASOS)
Input : R(.), C(.), {d (vi → vj) : `(vi) = c}, λ, T , m

Initialization: w
(0)
c ∈ B+

λ = {x : ‖x‖2 ≤ 1√
λ
,x � 0}1

for t = 0, . . . , T do2

• determine R(vi) and C(vi) ∀vi such that `(vi) = c (use w
(t)
c if needed)3

• determine Ac ∈ RL×F4

// original PEGASOS iteration5

• Randomly choose Ct ⊆ {1, . . . , L}, where |Ct| = m6

• Set C+
t = {i ∈ Ct : aTc (i)w

(t)
c < 1} and ηt = 1

λt
7

• Compute subgradient: ∇t = λw
(t)
c − 1

|C+
t |

∑
i∈C+

t
ac(i)8

• Do subgradient descent step: w
(t+ 1

2 )
c = w

(t)
c − ηt∇t9

• Project onto B+
λ : w

(t+1)
c = min

1, 1/
√
λ∥∥∥∥∥∥

[
w

(t+ 1
2 )

c

]
+

∥∥∥∥∥∥
2


[
w

(t+ 1
2 )

c

]
+

10

end11

return w
(T )
c12

In our MMDL formulation, the distance constraint matrix Ac is directly de-
pendent on the definition of R(.) and C(.). One popular definition is to equate
R(vi) to the set of all DTs within class c and C(vi) to the set of all DTs outside
class c (refer to Fig. 1(a)). This definition was used in [14–16]. This is quite restric-
tive, since it assumes that classes in feature space must be significantly compact
(i.e. the minimum distance between any sample in class B to class A is at least
the maximum distance between any two samples in class A). This is usually not
the case for most real data. Based on this definition, the total number of distance
constraints is L = Θ(M3), which quickly becomes intractable for reasonably sized
datasets. As a result, heuristic pruning measures were taken to reduce this num-
ber [15, 14]; however, it remains Θ(M3). A major problem with these measures is
their immutability, since relevant constraints that are pruned at the beginning can
never be added back to the learning process. Therefore, a need arises for another
definition of R(.) and C(.) that is less restrictive (i.e. a more general representation
of real data) and less computationally demanding.

3 The projection onto B+
λ is necessary due to the non-negativity constraint on wc. The

[.]+ operator returns a vector whose negative coordinates are truncated to zero.
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Although our MMDL method can handle a general structure for R(.) and C(.),
in this paper, we set R(vi) to the k nearest neighbors of vi within its class. This
is based on the intuition that a simple kNN classifier can be easily employed to
classify vi. In this case, STEPS 2-3 in Algorithm 1 are equivalent to finding vi’s
nearest neighbors according to w

(t)
c . Note that the value of k need not be the same

for every class c. A similar scheme can be applied to set C(vi); however, since M �
N and to avoid overhead computation, we do not compute the nearest neighbors
of vi outside class c. Instead, we simply let C(vi) be the set of all DTs outside class
c (refer to Fig. 1(b)). Since k �M , the total number of distance constraints now
is L = Θ(M2). However, only m out of L constraints are actually used in a single
iteration and m is usually much smaller than L. In fact, we show empirical results
where the total number of constraints per DL-PEGASOS iteration can be reduced
tom = Θ(M), without loss in recognition performance. Since a random set of these
relevant constraints is chosen every iteration, the immutability problem facing
previous methods is also alleviated. Moreover, the computational complexity of
DL-PEGASOS, with R(.) and C(.) defined as above, is Θ

(
T ( 2F+k

N M + Fm)
)
,

which includes computing and sorting the combined distancesDwc
. While previous

MMDL methods suffer from Θ(M3) complexity, our method is at worst Θ(M2)
and on average Θ(M).

(a) (b)

Fig. 1. shows examples of two definitions for R(vi) and their impact on the relative
positioning of classes in feature space. For illustration purposes, we assume an L2 distance
is used between features. 1(a) is an example of the definition used in [14–16]. 1(b) is an
example of the definition used here. Note how the classes need to be more separated (or
equivalently more compact) in 1(a) than 1(b).
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5 Experimental Results

In this section, we present experimental results that validate the DL-PEGASOS
algorithm4 in terms of DT recognition. We first learn class-independent and class-
dependent weights for the UCLA benchmark dataset [5]. Realizing that recognition
performance on this dataset has saturated and that it lacks DT diversity, a new,
easily accessible benchmark is essential. We organize the DynTex++ dataset to
be this next benchmark and evaluate our algorithm on it.

5.1 UCLA Dataset

The UCLA dynamic texture dataset contains 50 classes of gray-scale dynamic
texture, each of which is comprised of 4 DT sequences. Since these 50 classes
contain the same DTs at different viewpoints, they can be grouped together to
form 9 classes, as in [9]. Each DT sequence includes 75 frames of 160× 110 pixels.
Here, the DT sequences are cropped to show the representative dynamics alone,
thus, leading to frames of 48× 48 pixels.

50-class breakdown: In the case of the 50 DT classes, the state-of-the-art recog-
nition result (97.5%) was achieved by using kernel support vector machines (SVM’s)
[24]. Here, four cross-fold validation was performed, so the training set included
M = 150 DT sequences (i.e. 3 sequences for each class). Applying DL-PEGASOS
with m = 150 (i.e. Θ(M)) and T = 25 iterations, we obtain an average recogni-
tion performance of 99% when both class dependent and class independent weights
were learned. The class independent weights for the LBP, PHOG, and LDS descrip-
tors are w1 = 1.95, w2 = 1.12, and w3 = 1.33 respectively. This clearly indicates
that the discrimination between DTs in this dataset is dominated by their spatial
texture features, whereby using these features alone leads to a recognition rate
of 90%. This reinforces the conclusion of [7], whose authors also reported on the
dominant discriminative power of static texture in the UCLA DT dataset. In what
follows, we will evaluate DL-PEGASOS on the 9-class breakdown of this dataset,
since it poses a greater challenge.

9-class breakdown: In the case of the 9 DT classes, the state-of-the-art recog-
nition result (80%) was achieved by using a bag-of-words model on LDS features
[9]5, which lends itself useful to view-invariant recognition. For comparison, we
adopt the same experimental setup as in [9]. We train on 50% of the dataset
(i.e. M = 100) and test on the rest, with the recognition rates recorded as the
average rate over 20 trials (i.e. random bisection of the classes in the dataset).
First, we study the effect of the DL-PEGASOS free parameters (i.e. m and T )
on the average recognition performance. Fig. 2(a) plots the recognition rate of
class independent DL-PEGASOS when m is varied, while T is fixed to 25 itera-
tions. Since k = 1, the total number of distance constraints is about 7000, from
which m distance constraints are randomly chosen at each iteration. It is evident

4 All experiments were executed using MATLAB 7.6 on a 2.4 GHz, 4GB RAM PC.
Some DL-PEGASOS parameters were kept constant: (i) k = 1 nearest neighbors for
R(.) and (ii) λ = 0.05.

5 In [9], only 8 classes were considered, since the “plants” class was removed.
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that recognition rate very quickly stabilizes (∼ 95%), thus, indicating that most
distance constraints do not play a significant role in discriminating between DT
classes. This seems intuitive, since most constraints are easily satisfied for DTs
that are significantly different in DT feature space. We also conclude that m can
be reduced to Θ(M), without loss of performance. Similarly, Fig. 2(b) plots the
recognition rate as T is increased, while m is fixed to 100. Clearly, the stable rate
(∼ 95%) is reached in a very small number of iterations.

(a) (b)

Fig. 2. plots the recognition performance of DL-PEGASOS versus m (the number of
distance constraints per iteration) and T (the maximum number of iterations) when
class dependent weights are learned. To obtain the recognition rates in 2(a), we use
T = 25. To obtain the recognition rates in 2(b), we use m = 100.

Fig. 3. shows the confusion matrix for the
9-class recognition experiment

By setting m = 100 and T =
25, we obtain an average recogni-
tion rate of 95.6%, which signifi-
cantly outperforms the state-of-the-
art (80%) on this dataset. Fig. 3
shows the average confusion matrix
for this experiment. The confused
classes tend to have very similar
appearance and/or dynamics, espe-
cially “fire” + “smoke”, “flowers” +
“plants” and “fountains” + “water-
fall”. In regards to time complex-
ity, each complete trial ran in under
0.6 seconds. This time does not in-
clude feature extraction or pairwise
elementary distance computation.

Here, we mention that the recog-
nition performance of class depen-
dent DL-PEGASOS (82%) is signif-
icantly less than the class indepen-
dent performance above. This is in-
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dicative of overfitting due to the small number of DTs per class. However, it is
worthwhile to examine the values of wc, since they shed light on which DT dimen-
sion(s) are the most discriminative for a given class. From the weights in Table 1,
we notice that some of our intuitions about what discriminates certain DTs are
validated. For example, classes defined primarily by their spatial texture appear-
ance (e.g. “flowers”, “plants”, and “sea”) have dominant w1 values. Other classes
that are primarily defined by their motion have dominant w3 values (e.g. “fire”
and “fountains”). Interestingly, the “boiling water” class is the only class where w2

is the largest weight. This is due, in part, because the spatial texture is irregular
and highly varying over time, while the overall layout remains stable. The other
classes rely on a combination of these dimensions for their discriminative power.

boiling water fire flowers fountains plants sea smoke water waterfall
w1 (LBP) 0.21 1.22 10.58 0.12 2.95 6.27 4.23 7.13 4.73
w2 (PHOG) 7.81 0.17 1.06 0.83 0.19 2.95 1.99 1.61 0.93
w3 (LDS) 7.31 7.07 1.45 10.18 0.14 1.08 5.93 4.70 7.12

Table 1. class dependent weights for the 9-class recognition experiment

5.2 DynTex Dataset

As mentioned before, the UCLA dataset is currently the benchmark for DT
recognition, even though a much larger and more diverse database (the Dyn-
Tex database [25]) exists. The UCLA dataset remains the benchmark due to the
following reasons. (i) Its DT sequences have already been pre-processed from their
raw form, whereby each sequence is cropped to show its representative dynamics
in absence of any static or dynamic background. (ii) Only a single DT is present in
each DT sequence. (iii) In each DT sequence, no panning or zooming is performed.
(iv) Ground truth labels of the DT sequences are provided. Although some re-
searchers have applied their recognition algorithms on the DynTex database (e.g.
[20]), it is difficult to manage/use because it lacks the above four properties, in
its present form. Therefore, we propose the compilation of a new database, called
DynTex++.

Compiling the DynTex++ Database: The goal here is to organize the raw
data in the DynTex database in order to provide a richer benchmark that will be
publicly available for future DT analysis, in the same way the UCLA dataset is cur-
rently. The original database is already publicly available (∼ 2GB of data); how-
ever, only the raw AVI videos are provided. We proceeded to filter, pre-process, and
label these DT sequences. While DynTex contains a total of 656 video sequences,
DynTex++ uses only 345 of them. We eliminated sequences that contained more
than one DT, contained dynamic background, included panning/zooming, or did
not depict much motion. The remaining sequences were then hand labeled as one
of N = 36 classes (e.g. “flying birds”, “waterfall”, “vehicle traffic”). They were
not uniformly distributed among the N classes. We preprocessed them so each
class contained the same number of subsequences.
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Fig. 4. shows the confusion matrix for
DT recognition on DynTex++

The preprocessing proceeded as fol-
lows: (i) Each sequence is spatially
downsampled by a factor of 0.75 and
converted to grayscale intensity. (ii)
Since it is infeasible to manually crop
these sequences, we randomly selected a
large (1000) set of subsequences of fixed
size (50 × 50 × 50), each of which is
attributed a relevance score that repre-
sents how much motion it entails. This
score is the average optical flow [26]
energy in the subsequence. By doing
this, static background subsequences are
eliminated from consideration and the
more relevant DT subsequences remain.
(iii) After sorting the subsequences ac-
cording to their relevance scores, we se-
lected the highest 100 in each class (uni-
formly chosen from the video sequences
constituting this class), thus, resulting in a database of M = 3600 subsequences.
For more details on DynTex++, refer to the supplementary material.

DL-PEGASOS on DynTex++: We apply our approach to the DynTex++
dataset, using an experimental setup similar to the one in the 9-class experiment
on the UCLA dataset. In this case, we set m = 2000 and T = 100. We obtain
an average recognition rate of 63.7%, with the average confusion matrix shown in
Fig. 4. Each trial took under 15 seconds to run to completion.

6 Conclusion

In this paper, we formulate DT recognition in a maximum margin distance learn-
ing framework, where the distance between two DTs is a linear combination of
elementary distances, each representing one of the three dimensions of DT space.
These distance weights are efficiently learned by our proposed DL-PEGASOS al-
gorithm, which can be empirically shown to have computational complexity linear
in the number of training samples. We validated our approach by outperforming
the state-of-the-art on the UCLA benchmark, as well as, applying it the newly
compiled DynTex++ dataset that will be made publicly available.
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