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ABSTRACT

Temporal or dynamic textures (DT’s) are video sequences
that are spatially repetitive and temporally stationary. DT’s
are temporal analogs of the well known spatial still image
texture. Examples of DT’s include moving water, foliage,
smoke, clouds, etc. We present a new DT model that can effi-
ciently compress DT sequences. The proposed method (Phase
PCA) models the varying phase content of a DT, which is em-
ployed as the major determinant of both its dynamics and ap-
pearance. Consequently, Phase PCA combines both temporal
and spatial properties in a compact spectral framework. Mak-
ing use of the benefits inherent to working in the frequency
domain, this model provides a significant improvement in DT
compression, which can be used to improve the performance
of MPEG-I encoding. We will present experimental evidence
that validates this method for a variety of complex sequences,
while also comparing it to the most recent DT representa-
tional model that is based on linear dynamical systems (LDS).

Index Terms— Dynamic texture, Phase, LDS, PCA

1. INTRODUCTION

Modelling of complex motion patterns in images remains un-
solved in computer vision, since it poses numerous problems
especially those related to reliable motion field estimation.
These problems become even more complex when consider-
ing non-rigid stochastic motions (e.g. DT’s). For example,
a scene of “translating” clouds conveys visually identifiable
global dynamics; however, the implosion and explosion of the
cloud segments during the motion result in very complicated
local dynamics. So, it is evident that efficient DT compres-
sion poses a serious challenge.

Methods ([1]) relying on optical flow are convenient, since
the frame-to-frame estimation of the motion field has been
extensively studied and computationally efficient algorithms
have been developed. However, these methods only capture
temporal characteristics of the DT and are prone to error es-
pecially due to noise sensitivity and motion discontinuity. In
fact, motion field estimation becomes a significantly harder

task due to the non-rigid nature and complex motion preva-
lent in DT’s.

In comparison to the previous techniques, fewer spatiotem-
poral models have been developed for DT’s. These include
the pioneering work by Nelson and Polana (1992) [2], the
spatio-temporal auto-regressive (STAR) by Szummer and Pi-
card [3], and multi-resolution analysis (MRA) trees by Bar-
Joseph et al. (2001) [4]. These methods impose restrictions
on the textures that can be modelled or are applied directly
on pixel intensities instead of more compact representations
(i.e. pixel groupings), thus, precluding feasible compression.
The most recent representational DT model was developed
by Doretto et al. (2003) [5], in which a linear time invari-
ant dynamical model (LDS) is derived for the DT. This model
has been applied to DT compression and synthesis [5], recog-
nition [6], and segmentation [7]. However, the main disad-
vantages of this particular method include its assumption of
second-order probabilistic stationarity for the DT and its com-
putational expense, since it is applied directly to pixel inten-
sities.

Our method uses the phase content of the DT sequence
to model both its appearance and dynamics. In what follows,
we justify our choice of using phase, present the details of
our compression model, and provide experimental results that
compare its performance to that of LDS and a standard video
compression scheme, MPEG-I.

2. MOTIVATION

In general, there are some distinct advantages inherent to us-
ing the image frequency domain over the spatial domain. Most
importantly, the frequency domain captures spatially global
features. This is more suited for high-level applications in-
cluding DT compression and recognition. Also, frequency
analysis has been shown to be robust to some variations (e.g.
illumination changes [8]). Furthermore, computationally ef-
ficient algorithms and specific hardware are available for the
computation of frequency transforms (e.g. FFT).

Let us motivate why we propose using the phase content



of a DT to dually represent its appearance and its tempo-
ral variations. First, Monson Hayes ([9]) proved that multi-
dimensional signals can be reconstructed from their phase
content only. Certain signals that have symmetric factors in
their Z-transform are excluded. In fact, if a hybrid image is
constructed out of the amplitude spectrum of one image and
the phase spectrum of another, an iterative algorithm exists
that will reproduce the original image, from which the phase
spectrum was extracted. Figure 1 shows a result of the phase-
only reconstruction algorithm applied to ocean and fire DT’s.
In what follows, we will assume that DT sequences have this
phase-only reconstruction property.
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Fig. 1. (a) is the phase spectrum image. (b) is the amplitude
spectrum image. (c) is the hybrid image. (d), (e), and (f) are
the images after 50, 100, and 250 iterations respectively.

Next, we empirically justify the fact that the variations
in DT phase capture most of the DT’s temporal characteris-
tics and not the variations in DT amplitude. Figure 2 shows
that many more principal components are required to repre-
sent 80% of the variation in DT phase than to represent the
same amount in DT amplitude. Hence, we conclude that it is
relevant to represent only the phase spectrum of DT’s for the
purpose of compression.

3. PHASE PCA COMPRESSION MODEL

For DT compression, we perform PCA on the DT feature vec-
tors, which are the vectorized half spectra of DT phase for
the frames in the DT sequence. Only half the phase spec-
trum is required due to the conjugate symmetry property of
the FFT. Here, we note that the DT frames are preprocessed
with an appropriately sized Hanning window to mitigate spec-
tral leakage. We will use the notation in (1) and (2) to denote
the PCA basis (A), the feature vectors (<f>), their projections
in the PCA space (&), and the mean feature vector (i;m). For
an image of size MxN, the length of the feature vector is K =
MN

=5+, 80 that the size of A is KxL, where L is the number of
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Fig. 2. PCA components for DT phase and amplitude.

principal components that have been selected to represent the
data. For complete representation, L = F, which is the number
of frames in the DT sequence.
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Due to the symmetry of DT phase, considerable compres-
sion is possible for each individual frame. We note here that
additional compression can be achieved by neglecting fre-
quencies with low energy, mainly in the high frequency bands
and by using the dimension reduction option inherent to PCA.
However, we must ensure that the visual quality of the com-
pressed frames be “close” as possible to that of the uncom-
pressed ones.

Below, we first present the compression rates that can be
achieved by both Phase PCA and LDS in terms of the number
of principal components used for DT representation. Then,
we describe how the compression performance of our method
can be enhanced by forming a more compact PCA space.

3.1. Basic Phase PCA (BPP) Compression

In this section, we will present the overall compression rate
that can be achieved by reducing the dimensionality of the
phase PCA space. So, with this generic layout, we can com-
pute the expected overall compression rate (Rcomp) for an ar-
bitrary DT sequence as in (3). In fact, since L < F and @
> F, then the removal of any PCA component will lead to
significant data compression.

=

size(A) + size(P,,) + # of PCA coefficients
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The main factor dictating the extent of the data compres-
sion is %, the fraction of the PCA components used in the



representation. Also, note that even with a complete repre-
sentation (L=F), the compression rate is about 50%. This is
due to the fact that only half the phase spectrum is used to
represent the DT, so the amplitude spectrum must be initially
determined by the iterative process mentioned in the context
of phase-only reconstruction. In fact, sending a single mag-
nitude response is possible with a slight decrease in the com-
pression rate.

Using LDS, we require two matrices (A and C) and the
initial state Ty in order to reconstruct the DT. The dimension
of A is L'xL’ and that of C is 2KxL’, where L’ represents the
order of the LDS and K = @ as defined before. So, the
overall compression rate in the case of a DT with F' frames
is estimated as in (4). Note that if both methods render the
same compression rate, then the LDS method requires about

half the number of principal components used by BPP.

size(A) + size(C) + size(Zop)
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3.2. Principal Difference Phase PCA Compression

In this section, we describe a different, yet equivalent DT
phase spectrum, which forms a framework that allows for fur-
ther DT compression. This is achieved when the difference in
phase spectra between every two consecutive frames is forced
to be a principal angle, since the dynamics of the DT sequence
is embedded in the frame-to-frame change of the phase and
not the absolute value of each individual frame.

This can be better understood by considering the example
of a simple rigid body translating in a video sequence with
constant displacement. In this case, the phase difference be-
tween every two consecutive frames is the same. Principal
Difference Phase PCA (PDPP) dictates that each of the or-
dered DT phase spectra be replaced by the sum of the previous
spectrum and the principal angle of the difference between
the original spectrum and the previous one. If this is done, the
feature vectors will be collinear in the high-dimensional space
and a more compact PCA representation can be acquired. Fig-
ure 3 shows a 2D version of this situation, where A, B, and
C represent the original feature vectors while A, B’, and C’
represent the transformed ones. Obviously, we can represent
A, B’, and C’ in a lower dimensional space (i.e. the line con-
necting these collinear points) than the one required to span
A, B,and C.

In Figure 4, we show that for the same number of PCA
components (i.e. compression rate), PDPP can represent sig-
nificantly more variation in DT phase than the BPP method
described in Section (3.1).

Fig. 3. BPP vs. PDPP in 2D
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Fig. 4. BPP vs. PDPP for two DT’s

4. EXPERIMENTAL RESULTS

In this section, we present experimental results that validate
the significance of our proposed method for DT compression
and compare its performance to that of LDS. Figure 5 ((a)-
(c)) compares the performance of LDS, BPP, and PDPP over
arange of compression rates, that are proportional to the num-
ber of principal components used. We note here that the com-
pression rate is computed from the number of principal com-
ponents required by LDS. It is evident from these plots that
BPP, in general, outperforms the LDS compression scheme,
mainly due to the fact that only half the phase spectrum is
modelled. Furthermore, PDPP renders a significant improve-
ment over BPP even at very low compression rates. In (d), we
show the temporal performance of each compression scheme
at a compression rate of 63%. We notice that both BPP and
PDPP tend to oscillate about a steady PSNR value, while LDS
performance decreases with time. This is due to the fact that
LDS produces a DT frame as a linear combination of the L
chosen principal components, which are computed from L’
frames of the original DT and not all of them (i.e. F).

Next, we compare PDPP compression to that of the MPEG-
I standard, as portrayed in Figure 6. Here, we define the
compression rate for each case as the ratio of the size of the
MPEG-I video to that of the original, uncompressed video.

From the above plots, we see that our method outperforms
MPEG-I in the first three DT’s, but does worse for the fire
sequence. This improvement is primarily due to the more
compact representation of the temporal characteristics of the
DT inherent to PDPP. Since MPEG-I requires computation
of motion fields and these estimates based on optical flow al-
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Fig. 5. LDS vs. BPP vs. PDPP in terms of compression rate

gorithms tend to degrade with the complexity of the motion,
MPEG-I does not perform as well for the random-like motion
of DT’s. On the other hand, the fire sequence requires more
PCA components to render the same compression rate mainly
due to the nature of the DT and its background.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel compression model for
DT’s, which represents both appearance and temporal infor-
mation based on DT phase content. This model was shown
to outperform the most recently used DT model in the lit-
erature. Moreover, we compared our model with MPEG-I
and showed that more compression is possible, when a more
compact representation of the temporal properties of the DT
is available. In the future, we would like to extend this model
to incorporate only high energy frequencies and examine how
information theoretic coding might improve its compression
performance.

6. REFERENCES

[1] P. Bouthemy and R. Fablet., “Motion characterization
from temporal cooccurrences of local motion-based mea-
sures for video indexing,” in Proc. of ICPR, 1998, vol. 1,
pp. 905-908.

[2] R.C. Nelson and R. Polana, “Qualitative recognition of
motion using temporal texture,” in Proc. of ICPR, 1992,
pp- 56-78.

[3] M. Szummer and R. W. Picard, “Temporal texture mod-
eling,” in Proc. of ICIP, 1996, vol. 3.

MPEG1 vs. PDPP for smoke
42 2
—e— MPEG °
# ——FORP |
J\f\/\\ |

MPEG1 vs. PDPP for clouds

—e— MPEG
POPP

L

il
e
LA L LA

st | Qb

5 10 15 20 25 Eq] E3 0 20 ] a0 50 Eil 70
Frame # Frame #

PSNRin dB

PSNRin dB
=

(@) (b)
MPEG1 vs. PDPP for ocean - MPEGH1 vs. PDPP for fire

A= | =

» 1 TR QRM
: T s
j 2ol ‘
EAAFITN Vet \A

I ﬂuv V Ay mvf\ \]nuh W W

0 5 10 15 0 E3 ] E3 0 0 20 3 4 & 8 70 80 9@
Frame # Frame #

(© (d)

Fig. 6. MPEG-I vs. PDPP at compression rates of 95%, 19%,
33%, and 32% respectively for (a)-(d)

[4] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Wer-
man, ‘“Texture mixing and texture movie synthesis using
statistical learning,” [EEE Trans. on Visualization and
Computer Graphics, pp. 120-135, 2001.

[5] S. Soatto, G. Doretto, and Y. N. Wu, “Dynamic textures,”
International Journal of Computer Vision, vol. 51, pp.
91-109, 2003.

[6] P.Saisan, G. Doretto, Y. N. Wu, and S. Soatto, “Dynamic
texture recognition,” in Proc. of ICPR, 2001, vol. 2, pp.
58-63.

[7] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dy-
namic texture segmentation,” in Proc. of ICCV, 2003,
vol. 2, pp. 1236-1242.

[8] M. B. Savvides, V. Kumar, and P.K. Khosla, “Eigen-
phases and eigenfaces,” in Proc. of ICPR, 2004, vol. 3,
pp. 810-813.

[9] M. Hayes, “The reconstruction of a multidimensional se-
quence from the phase or magnitude of its fourier trans-
form,” IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. 30, no. 2, 1982.



